
A Mathematica Simulator of Quantum Circuits

V.P. Gerdt1, A.N. Prokopenya2

1e-mail: gerdt@jinr.ru, Laboratory of Information Technologies, JINR, Dubna; 2e-mail:
propenya@brest.byu, Brest State Technical University, Brest, Belarus

In this note we briefly present the first version
of our Mathematica package QuantumCircuit [1]
for simulation of quantum circuits [2] and illustrate
some of its features by simple examples.

To provide a user with a tool for designing and
testing quantum algorithms, a simulator program
must be user-friendly, allow to input arbitrary
quantum circuit and able to calculate a unitary cir-
cuit matrix in the general case of n-qubit memory
register.

There are quite a number of different quantum
simulators implemented in different classical com-
puter languages. Most of the simulators presented
on the Website [3]. Among them there are sev-
eral programs developed with Mathematica. But
all they are not universal in a sense that it is not
possible to analyze an arbitrary quantum algorithm
within the framework of any of them. Our package
QuantumCircuit satisfies this and other indicated
requirements that makes it useful for designing and
testing quantum algorithms. At the moment we fo-
cus mainly on constructing quantum circuits and
computing the corresponding unitary matrices but
the package is improved and extended to cover all
types of calculations being necessary to simulate a
quantum computer.

General structure of any quantum circuit can be
readily understood from Fig. 1, where a quantum
circuit implementing the Toffoli gate is depicted.

�a1�

�a2�

�a3�

�b1�

�b2�

�b3�H T æ T T æ

T æ

T

T æ

H

T

S

Figure 1: Implementation of the Toffoli gate using
Hadamard (H), phase (S), controlled-NOT (CNOT) and
π/8 (T) gates

The circuit is to be read from left-to-right. It
means that a column of three qubits |a1〉, |a2〉, |a3〉
in the left-hand side of the diagram determines an
initial state of the memory register. Then it is suc-
cessively acted on by different quantum gates and
its final state is shown on the right-hand side of
the diagram as a column of qubits |b1〉, |b2〉, |b3〉.
We have drawn vertical dashed lines in Fig. 1 to
show clearly that evolution of the memory register
is controlled by means of successive application of
quantum gates to different qubits at each step of
computation.

To generate and draw the circuit of Fig. 1 by
means of package QuantumCircuit, it is sufficient
to input the corresponding 3× 13 matrix, as shown
in Fig. 2, and to invoke the function circuit[mat]
that depicts the circuit defined by the matrix mat.

mat �

1 1 1 C 1 1 1 C 1 C 1 C T

1 C 1 1 1 C 1 1 Tæ N Tæ N S

H N Tæ N T N Tæ N T 1 H 1 1

; circuit�mat�

Figure 2: A matrix corresponding to the circuit of Fig.1

It should be emphasized that a user can easily add
or delete some row or column in the matrix mat or
change some symbols replacing the corresponding
quantum gates. Then the command circuit[mat]
immediately visualizes a new quantum circuit. Af-
terwards, one can readily compute a unitary matrix
corresponding to the quantum circuit by invoking
function matrixU[mat]. The built-in data base of
the package contains all basic gates [2].

Computational performance of package
QuantumCircuit is illustrated by Fig. 3 where
the timings were obtained on the notebook Toshiba
Satellite A305 4 Gb RAM and with Intel Core2 Duo
CPU, 2GHz. It should be noted that the unitary

5 10 15 20
n

�4

�2

2

4

lnt

Figure 3: Calculation time of tensor product of n
Hadamard (•) and Pauli-X (σ1) (�) matrices

matrix for the tensor product of ten Hadamard
gates has size 210 × 210 and occupies more than 1
Gb memory. In QuantumCircuit such matrices are
stored as sparse arrays, and this enables to increase
significantly the number of qubits in a circuit to
be processed by the package. Thus, for a tensor
product of 20 Pauli-X gates one needs only about
25 Mb memory.

To demonstrate application of the package
”QuantumCircuit” to simulation of quantum algo-
rithms we consider Grover’s algorithm for searching

199

a marked item in an unstructured database [4]. Let

�a1�

�a2�

�a3�

�a4�

�a5�

�b1�

�b2�

�b3�

�b4�

�b5�

H

H

H

H

H

X X

H

H

H

H

X

X

X

X Z

X

X

X

X

H

H

H

H

Figure 4: Quantum circuit implementing Grover’s
search algorithm (n = 4, k = 11)

a quantum memory register contain (n = 4) data
qubits |a1〉, |a2〉, |a3〉, |a4〉 are originally prepared
in the state |0〉 and one ancillary qubit |a5〉 is in the
state |1〉. It means that the initial state of the mem-
ory register is |00001〉 and the corresponding basis
vector in the 32-dimensional Hilbert space has the
second component equal to one and all other compo-
nents equal to zero. Applying five Hadamard gates,
one for each qubit, we obtain an equal superposi-
tion of all basis states of the five-qubit system. A
quantum search subroutine bounded by two dashed
lines in the diagram (Fig. 4) is a 4-bit binary func-
tion that outputs 1 if its input is some given integer
(k = 11 in the case shown) and 0 otherwise. This
subroutine together with a quantum circuit drawn
on the right of the dashed line form one Grover’s
iteration.

Note that Grover’s iteration can be applied to the
memory register several times bringing it to some
final state that can be measured in the computa-
tional basis. And if the number of iterations is
equal to the integer part of π/(4 arcsin(2−n/2)) =
π/(4 arcsin(1/4)) = 3.108 (see [2], [4], then the final
state will be exactly |k〉 with very high probability.

To find a final state of the memory register after
several Grover’s iterations let us define two matrices
mat0 and matG (Fig. 5). The first one represents
a column of Hadamard gates bringing initial state
|00001〉 of the memory register to equal superpo-
sition of all basis states. The corresponding uni-
tary 25×25 matrix matU0 is given by the function
matrixU[mat0] . The second matrix matG rep-

initial � SparseArray�2 � 1, 2^5�;

mat0 � ��H�, �H�, �H�, �H�, �H��; matU0 � matrixU�mat0�;

matG �

1 C 1 H X C X H

X C X H X C X H

1 C 1 H X C X H

1 C 1 H X Z X H

1 N 1 1 1 1 1 1

; matU1 � matrixU�matG�;

firstIteration � matU1.matU0.initial;

secondIteration � matU1.firstIteration;

thirdIteration � matU1.secondIteration

Figure 5: Mathematica code for computing a final vec-
tor after three Grover’s iterations

resents one Grover’s iteration and the correspond-
ing unitary matrix is given by matrixU[matG].

Defining the initial state of the memory register as
a sparse vector initial, one can act on it with op-
erator matU0 and then apply successively several
Grover’s iterations matU1. As a result we obtain
a unit vector with 25 = 32 components which de-
termine probabilities of different basis states of the
memory register. Remind that hidden item is en-
coded by the states of four qubits |a1〉, |a2〉, |a3〉,
|a4〉, while the ancillary qubit |a5〉 is finally in the
state 1√

2
(|0〉 − |1〉) and may be found in both basis

states |0〉 and |1〉 with equal probability. Therefore,
a probability P to get k (k = 0, 1, ..., 15) as a result
of measurement of the memory register |a1a2a3a4〉
is equal to a sum of the 2kth and (2k + 1)th com-
ponents squared of the final vector.

2 4 6 8 10 12 14
k

0.2

0.4

0.6

0.8

1.0
P

Pmax
�3� �0.96fork�11

Pmax
�1� �0.47fork�11

Figure 6: Probability distribution in the final state af-
ter one and three Grover’s iterations

Fig. 6 shows that after one iteration a probabil-
ity to get a correct number k = 11 as a result of
measurement is equal to 47 percent, while after the
third Grover’s iteration a standard measurement in
the computational basis gives 11 with probability
96 percent. It should be noted also that the fourth
iteration decreases a probability to get a correct re-
sult to 58 percent. Thus, maximum probability to
obtain correct result is reached if the number of
iterations is equal to its optimal value that is de-
termined as an integer part of π/(4 arcsin(1/

√
N),

where N = 2n. For large values of N this number
is O(

√
N) and, hence, Grover’s algorithm provides

a quadratic speed-up in solving the search problem
in comparison with a classical computer which re-
quires O(N) applications of the subroutine.

References

[1] Gerdt V.P., Kragler R., Prokopenya A.N.: A Math-
ematica Package for Simulation of Quantum Com-
putation. Lecture Notes in Computer Science 5743,
Springer-Verlag, Berlin, 2009, pp.106-117.

[2] Nielsen M., Chuang I.: Quantum Computation
and Quantum Information. Cambridge Univ. Press.
2000.

[3] http://www.quantiki.org/wiki/index.php/

List of QC simulators
[4] Grover L.K.: Quantum mechanics helps in searching

for a needle in a haystack. Phys.Rev.Lett. 79 (1997)
325–328.

200

